
This standard is issued under the fixed designation E 1996; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers exterior windows, glazed curtain walls, doors, and impact protective systems used in buildings located in geographic regions that are prone to hurricanes.

1.2 This specification provides the information required to conduct Test Method E 1886.

1.3 Qualification under this specification provides a basis for judgment of the ability of applicable elements of the building envelope to remain unbreached during a hurricane; thereby minimizing the damaging effects of hurricanes on the building interior and reducing the magnitude of internal pressurization. While this standard was developed for hurricanes, it may be used for other types of similar windstorms capable of generating windborne debris.

1.4 This specification provides a uniform set of guidelines based upon currently available information and research. As new information and research becomes available it will be considered.

1.5 All values are stated in SI units and are to be regarded as standard. Values given in parentheses are for information only. Where certain values contained in reference documents cited and quoted herein are stated in inch-pound units they must be converted by the user.

1.6 The following precautionary statement pertains only to the test method portion, Section 5, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

C 719 Test Method for Adhesion and Cohesion of Elastomeric Joint Sealants Under Cyclic Movement (Hockman Cycle)
C 1135 Test Method for Determining Tensile Adhesion Properties of Structural Sealants
D 3575 Test Methods for Flexible Cellular Materials Made From Olefin Polymers
E 631 Terminology of Building Constructions
E 1886 Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials

2.2 ASCE Standard:

ASCE 7 American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures

2.3 Other Standards:

International Residential Code 2000

3. Terminology

3.1 Definitions:

3.1.1 General terms used in this specification are defined in Terminology E 631.

3.1.2 Terms common to this specification and Test Method E 1886 are defined in Test Method E 1886, unless defined herein.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 assembly elevation—vertical dimension above adjacent mean ground level at which fenestration or impact

For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.

Available from American Society of Civil Engineers (ASCE), 1801 Alexander Bell Dr., Reston, VA 20191, http://www.asce.org.

protective system assembly is to be installed, measured to the lowest point of the assembly.

3.2.2 basic wind speed—three-second gust speeds as defined in the latest edition of ASCE 7.

3.2.3 combination mullion—a horizontal or vertical member formed by joining two or more individual fenestration units together without a mullion stiffener.

3.2.4 impact protective system—construction applied, attached, or locked over an exterior glazed opening system to protect that system from windborne debris during high wind events.

3.2.4.1 Discussion—Impact protective systems include types that are fixed, operable, or removable.

3.2.5 infill—glazing in a fenestration assembly or curtain wall.

3.2.6 integral mullion—a horizontal or vertical member which is bounded at both ends by crossing frame members.

3.2.7 maximum deflection—Greatest deformation of an element or component under the application of an applied force.

3.2.8 maximum dynamic deflection—greatest deformation of an element or component during the missile impact.

3.2.9 meeting rail or check rail—one of the two horizontal members of a sliding sash that come together when in the closed position.

3.2.10 meeting stile—one of the two vertical members of a sliding sash that come together when in the closed position.

3.2.11 porous impact protective system—an assembly whose aggregate open area exceeds ten percent of its projected surface area.

3.2.12 valley—a pivoting axis of an impact protective system designed to rotate adjacent slats or panels outward.

4. Test Specimens

4.1 Number of Test Specimens:

4.1.1 Fenestration Assemblies:

4.1.1.1 Three test specimens shall be submitted for the large missile test.

4.1.1.2 Three test specimens shall be submitted for the small missile test.

4.1.1.3 One additional test specimen may be submitted for each of the tests should no more than one of the original three specimens fail any portion of the testing.

4.1.2 Impact Protective Systems:

4.1.2.1 A minimum of three test specimens shall be submitted for the large missile test for the largest span to be qualified.

4.1.2.2 A minimum of three test specimens shall be submitted for the small missile test.

4.1.2.3 One additional test specimen may be submitted for each of the tests should no more than one of the original specimens fail any portion of the testing.

4.2 Test specimens shall be prepared as specified in Test Method E 1886.

4.3 The size of the test specimen shall be determined by the specifying authority. All components of each test specimen shall be full size.

4.4 Where it is impractical to test the entire fenestration assembly such as curtain wall and heavy commercial assemblies, test the largest size of each type of panel as required by the specifying authority to qualify the entire assembly.

4.5 Fenestration assemblies and impact protective systems intended to be mulled together shall be tested separately or tested by combining three specimens into one mounting frame separated only by the Mullions.

5. Test Methods

5.1 Test specimens shall be tested according to Test Method E 1886.

5.2 Determine the missile based upon building classification, wind speed, and assembly elevation according to Section 6.

5.3 Location of Impact:

5.3.1 Large Missile Test—Impact each impact protective system specimen and each fenestration assembly infill type once as shown in Fig. 1, except for additional impacts specified in 5.3.2.

5.3.1.1 Impact one specimen with the center of the missile within a 65-mm (2½-in.) radius circle and with the center of the circle located at the center of each type of infill.

5.3.1.2 Impact a different specimen with the center of the missile within a 65-mm (2½-in.) radius circle and with the center of the circle located 150 mm (6 in.) from supporting members at a corner.

5.3.1.3 Impact the remaining specimen with the center of the missile within a 65-mm (2½-in.) radius circle and with the center of the circle located 150 mm (6 in.) from supporting members at a diagonally opposite corner.

5.3.2 Additional Impact Locations in Wind Zone 4

(See Fig. 1):

5.3.2.1 Impact the same specimen specified in 5.3.1.1 a second time with the center of the second missile within a 65-mm (2½-in.) radius circle and with the center of the circle located 150 mm (6 in.) from supporting member at a corner.

5.3.2.2 Impact the same specimen specified in 5.3.1.2 a second time with the center of the second missile within a 65-mm (2½-in.) radius circle and with the center of the circle located at the center of each type of infill.

5.3.2.3 Impact the same specimen specified in 5.3.1.3 a second time with the center of the second missile within a 65-mm (2½-in.) radius circle and with the center of the circle located at the center of each type of infill except as specified in 5.3.3.6.

Note 1—The white circles denote first impact and the black circles denote second impact.

FIG. 1 Impact Location for Large Missile Test (Each Type of Infill)
5.3.2.4 For test specimens with bracing at the specified impact location(s), the impact location(s) shall be relocated to the nearest area with no bracing.

5.3.3 Special Considerations:

5.3.3.1 For test specimens containing multiple panels, impact the exterior glazing surface innermost from the exterior plane of the fenestration assembly or impact protective system panel innermost from the exterior.

5.3.3.2 For test specimens containing fixed and operable panels of the same type of infill, impact the operable portion.

5.3.3.3 For operable test specimens, a corner impact location shall be nearest a locking device and the other corner impact location shall be at a corner diagonally opposite.

5.3.3.4 For test specimens with bracing at the specified impact location(s), the impact location(s) shall be relocated to the nearest area with no bracing.

5.3.3.5 The impacts on accordion impact protective systems shall be at the valleys located closest to the impact locations shown in Fig. 1.

5.3.3.6 In Wind Zone 4, impact the integral mullion and other intermediate members such as a meeting rail, check rail, or meeting stile mid-span in lieu of the impact specified in 5.3.2.3 if applicable. (See Fig. 2, Fig. 3, and Fig. 4.)

5.3.3.7 In Wind Zone 4, for each type of mullion impact one vertical or horizontal combination mullion with the longest span at mid span in addition to impacts specified in 5.3. (See Fig. 3.)

5.3.4 Small Missile Test—Impact each impact protective system specimen and each fenestration assembly infill type three times with ten steel balls each as shown in Fig. 5.

5.3.4.1 Each impact location shall receive distributed impacts simultaneously from ten steel balls. The impact shall be described in the test report.

5.3.4.2 The corner impact locations shall be entirely within a 250-mm (10-in.) radius circle having its center located at 275 mm (11 in.) from the edges.

5.3.4.3 The edge impact locations shall be entirely within a 250-mm (10-in.) radius circle at the centerline between two corners having its center located at 275 mm (11 in.) from the edge.

5.3.4.4 The center impact location shall be entirely within a 250-mm (10-in.) radius circle having its center located at the horizontal and vertical centerline of the infill.

<table>
<thead>
<tr>
<th>Specimen 1</th>
<th>Specimen 2</th>
<th>Specimen 3</th>
</tr>
</thead>
</table>
| FIG. 5 Impact Locations for Small Missile Test (Each Type of Infill)

NOTE 1—Impact locations for small missile test may overlap depending on the size of the specimen.

5.4 Air Pressure Cycling:

5.4.1 Air Pressure Differential:

5.4.1.1 The air pressure portion of the test shall use the test loading program in Table 1. Select P_{pos} and P_{neg} for the maximum inward (positive) and maximum outward (negative) air pressure differential for which qualification is sought.

<p>| TABLE 1 Cyclic Static Air Pressure Loading |</p>
<table>
<thead>
<tr>
<th>Loading Sequence</th>
<th>Loading Direction</th>
<th>Air Pressure Cycles</th>
<th>Number of Air Pressure Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Positive</td>
<td>0.2 to 0.5 P_{pos}</td>
<td>3500</td>
</tr>
<tr>
<td>2</td>
<td>Positive</td>
<td>0.0 to 0.6 P_{pos}</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>Positive</td>
<td>0.5 to 0.8 P_{pos}</td>
<td>600</td>
</tr>
<tr>
<td>4</td>
<td>Positive</td>
<td>0.3 to 1.0 P_{pos}</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Negative</td>
<td>0.3 to 1.0 P_{neg}</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Negative</td>
<td>0.5 to 0.8 P_{neg}</td>
<td>1050</td>
</tr>
<tr>
<td>7</td>
<td>Negative</td>
<td>0.0 to 0.6 P_{neg}</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>Negative</td>
<td>0.2 to 0.5 P_{neg}</td>
<td>3350</td>
</tr>
</tbody>
</table>
5.4.1.2 The air pressure differential to be used for porous impact protective systems shall be F (the design wind force for other structures as specified in ASCE 7) divided by the horizontally projected area of the entire assembly.

5.4.2 Except in Wind Zone 4, porous impact protective systems whose aggregate open area exceeds 50% of their projected surface area that pass the small missile test and that are not subject to the large missile test need not be tested for the air pressure portion of the test described in this section.

5.5 For impact protective system specimens that are tested independently of the fenestration assemblies they are intended to protect, measure, and record both the maximum dynamic deflection and the residual deflection following the impact test and measure and record the maximum positive deflection in combination with the residual deflection during the air pressure cycling test. Measure all deflections to the nearest 2 mm (0.1 in.).

6. Missiles

6.1 The specifying authority shall select an applicable missile by defining a level of protection, a wind zone, and an assembly elevation above the ground.

6.2 The applicable missile from Table 2 shall be chosen using Table 3 or Table 4, unless otherwise specified.

6.2.1 Unless otherwise specified, select the appropriate level of building protection from 6.2.1.1–6.2.1.3 and enter Table 3 or Table 4 at the appropriate column.

6.2.1.1 Enhanced Protection (Essential Facilities)—Buildings and other structures designated as essential facilities, including, but not limited to, hospitals; other health care facilities having emergency treatment facilities; jails and detention facilities; fire, rescue and police stations, and emergency vehicle garages; designated emergency shelters; communications centers and other facilities required for emergency response; power generating stations; other public utility facilities required in an emergency; and buildings and other structures having critical national defense functions.

6.2.1.2 Basic Protection—All buildings and structures except those listed in 6.2.1.1 and 6.2.1.3.

6.2.1.3 Unprotected—Buildings and other structures that represent a low hazard to human life in a windstorm including, but not limited to: agricultural facilities, production greenhouses, certain temporary facilities, and storage facilities.

6.2.2 Unless otherwise specified, select the wind zone based on the basic wind speed as follows:

6.2.2.1 Wind Zone 1—110 mph (49 m/s) ≤ basic wind speed <120 mph (54 m/s), and Hawaii.

6.2.2.2 Wind Zone 2—120 mph (54 m/s) ≤ basic wind speed <130 mph (58 m/s) at greater than 1.6 km (one mile) from the coastline. The coastline shall be measured from the mean high water mark.

6.2.2.3 Wind Zone 3—130 mph (58 m/s) ≤ basic wind speed <140 mph (63 m/s), or 120 mph (54 m/s) ≤ basic wind speed <140 mph (63 m/s) and within 1.6 km (one mile) of the coastline. The coastline shall be measured from the mean high water mark.

6.2.2.4 Wind Zone 4—basic wind speed >140 mph (63 m/s).

7. Pass/Fail Criteria

7.1 In Wind Zones 1, 2, 3, and 4, the specifying authority shall select an applicable pass/fail criterion based on 7.1.1 and 7.1.2.

7.1.1 Fenestration Assemblies and Non-Porous Impact Protective Systems:

7.1.1.1 The test specimen shall resist the large or small missile impacts, or both, with no tear formed longer than 130 mm (5 in.) and wider than 1 mm ($\frac{1}{32}$ in.) through which air can pass, or with no opening formed through which a 76 mm (3 in.) diameter solid sphere can freely pass when evaluated upon completion of missile impacts and test loading program.

7.1.1.2 All test specimens meeting the enhanced protection impact levels shall resist the large or small missile impacts, or both, without penetration of the inner plane of the infill or impact protective system, and resist the cyclic pressure loading specified in Table 1 with no tear formed longer than 130 mm (5 in.) and wider than 1 mm ($\frac{1}{32}$ in.) through which air can pass.
7.1.2 Porous Impact Protective Systems Tested Independently of the Fenestration Assemblies They are Protecting:

7.1.2.1 There shall be no penetration of the innermost plane of the test specimen by the applicable missile(s) during the impact test(s).

7.1.2.2 Upon completion of the missile impact(s) and test loading program, there shall be no horizontally projected opening formed through which a 76 mm (3 in.) diameter solid sphere can pass.

7.2 In Wind Zone 4, the specifying authority shall be permitted to select an optional applicable pass/fail criterion based on 7.2.1, 7.2.2, and 7.2.3.

7.2.1 All test specimens shall resist the large or small missile impacts, or both, without penetration of the inner plane of the infill or impact protective system, and resist the cyclic pressure loading specified in Table 1 with no tear formed longer than 130 mm (5 in.) and wider than 1 mm (1/16 in.) through which air can pass.

7.2.2 The overlap seams of an impact protective system shall not have a separation greater than 1/180 of the span or 13 mm (1/2 in.), whichever is less, after impact. The length of the separation shall not be greater than 900 mm (36 in.) or 40% of the span whichever is less.

7.2.3 Fasteners, when used, shall not become disengaged during the test procedure.

8. Product Qualification

8.1 When all test specimens submitted have met the requirements of this specification based on the pass/fail criteria described in Section 7, except in the case of 8.2, the set of test specimens shall be accepted according to the designated building classification, wind speed, and assembly elevation.

8.2 If any test specimen fails to meet the requirements of this specification based on the pass/fail criteria described in Section 7, it shall be rejected and one additional identical test shall be performed on the additional specimen specified in 4.1.1.3 or 4.1.2.3. Any additional failures shall constitute failure of the entire set of test specimens and it shall be rejected.

8.3 Impact protective system offset requirements:

8.3.1 Porous impact protective systems that are tested independently of the fenestration assembly shall be accepted for installations in which they are offset from the fenestration assemblies by the greater of the following:

8.3.1.1 The maximum dynamic deflection, as measured in 5.5 plus 25%; or

8.3.1.2 The sum of the maximum positive deflection and the residual deflection, as measured in 5.5 plus 25%.

8.3.2 Non-porous impact protective systems in essential facilities in all wind zones that are tested independently of the fenestration assembly shall be accepted for installations in which they are offset from the fenestration assemblies by the greater of the following:

8.3.2.1 The maximum dynamic deflection, as measured in 5.5 + 2 mm (0.1 in.); or

8.3.2.2 The sum of the maximum positive deflection and the residual deflection, as measured in 5.5 + 2 mm (0.1 in.).

8.4 Where the specifying authority has specified optional additional pass/fail criteria in accordance with 7.2, non-porous impact protective systems that are tested independently of the fenestration assembly shall be accepted for installations only in which they are offset from the fenestration assemblies as specified in 8.3.2.

8.5 Any test specimen that has passed the large missile impact test is not required to pass the small missile test, except for impact protective systems that contain openings greater than 5 mm (3/16 in.), projected horizontally.

8.6 Substitutions:

8.6.1 Substitutions within fenestration assemblies with successful tests shall be in accordance with Annex A1.

8.6.2 Substitutions within impact protection systems with successful tests shall be in accordance with Annex A2.

8.7 Manufactured assemblies successfully tested shall not be combined unless the structural supports and connections between assemblies have been designed for the wind loads.

8.8 Qualification at any load level automatically includes qualification for all lower load levels.

9. Compliance Statement

9.1 Report the following information:

9.1.1 Detailed description of test specimen(s) and test results in accordance with the report section of Test Method E 1886.

9.1.2 Missile type and cyclic loading pressure(s) for which the test specimen qualified.

9.2 Attach a copy of the test report from Test Method E 1886, to the compliance statement for this specification.

10. Keywords

10.1 building envelope; curtain walls; cyclic pressure loading; doors; fenestration; hurricanes; impact protective systems; missile impact; windborne debris; windows; windstorms
A1.1 Introduction

A1.1.1 Substitution allowances are presented in the following text. There are two types of substitutions for fenestration assemblies qualified under this standard: (1) substitutions of infill elements and (2) substitutions of all other elements.

A1.1.2 The substitution criteria in Annex A1 are related to impact and cycling performance only as found in this specification and in Test Method E 1886 and does not qualify systems for other performance attributes.

A1.1.3 The substitution language applies to the following fenestration types (representative diagrams of these fenestration types are located in Fig. A1.1):

- Sliding windows
- Sliding doors
- Storefront framing
- Fixed windows
- Mullions
- Projected or hinged windows
- Dual action windows and doors
- Hinged doors
- Curtain wall
- Skylights and roof windows

A1.1.3.1 Specialty windows and greenhouse windows are not covered in these substitution allowances.

A1.2 Substitution Categories

A1.2.1 Automatic—No additional testing or analysis necessary.

A1.2.2 Engineering Analysis—Demonstrated or documented performance through a review of materials that predicated a minimum of equivalent performance.

A1.2.3 Single Specimen—One specimen, identical to the original specimens qualified with the only difference being the element to be substituted.

A1.2.4 Not Allowed—Three identical specimens out of four are required to qualify the substitution, as for a new product.

A1.3 General Premises for Substitution

A1.3.1 For products qualified under 5.3.4, Small Missile Test, substitutions of all elements that are not infill elements shall be allowed automatically.

A1.3.2 Any substitution shall be allowed for materials and components only after three initial specimens out of four have passed all the prescribed performance requirements and are identical in every way including anchorage and mounting.

A1.3.3 Any substitution of an assembly of the same type as the three initial specimens that contains smaller sash, panels, or lites at equal or lower design pressures shall be allowed automatically provided the same methods of fabrication are...
used and the anchorage is unchanged. Smaller assemblies shall not exceed dimensions of the tested width or height.

A1.3.4 Any substitution within the fenestration assembly shall be equal to or stronger than the components originally tested.

A1.3.5 Any substitution shall be qualified at a pressure equal to the design pressure at which the three initial specimens were qualified.

A1.3.6 Any substitution of an element shall not be allowed if a failure occurs for any reason during a single specimen test of that substitution.

A1.3.7 Automatically substituted elements shall be allowed to be combined into a system without requiring engineering analysis or testing.

A1.3.8 No more than three substituted elements that are individually qualified by a single test shall be combined into a system.

A1.3.9 Anchorage:

A1.3.9.1 Any substitution of the anchorage method shall require the testing of one additional specimen with the only difference being in the anchorage method.

A1.3.9.2 Any substitution of the fastener, supported by engineering analysis to be equal to or stronger than the initial three qualified fasteners shall be allowed automatically provided the original spacing is not exceeded.

A1.3.9.3 Any substitution of weaker anchorage method or fasteners shall not be allowed.

A1.3.10 Insect Screens—If the initial specimens were tested without screens the addition of screens shall be allowed automatically. If the initial specimens were tested with screens, substitution of the screen shall require the testing of one additional specimen.

PREMISES FOR SUBSTITUTION—GLAZED PRODUCTS

A1.4 General

A1.4.1 When substituting an element on the basis of a single specimen test refer to Fig. A1.2 and select the worst case for impact locations for large missile or small missile. Order of impact is immaterial.

A1.5 Glazing Sealants, Adhesives, and Backbedding

A1.5.1 Substitution of glazing sealants, insulating glass primary or secondary sealants, adhesives or backbedding color change shall require the testing of one additional specimen, or shall be allowed by engineering analysis provided the only change from the initial three qualified specimens is a change in the sealant color and documentation is provided that the nominal specific gravity of the substituted material is ±0.06 from that used in the initial three specimens or historic data/documentation is provided showing that different colors perform to the same performance properties that are either within or outside the allowable specific gravity range.

A1.5.2 Any substitution within the fenestration glazing sealant, insulating glass primary or secondary sealants, adhesives or backbedding demonstrated to be equal to or stronger in ultimate tensile strength as shown in Test Method C1135 than the initial three qualified specimens shall require the testing of one additional specimen with the only difference being in the sealant. Substitution of a sealant, adhesive or backbedding material with a lower movement capability as shown in Test Method C719 shall not be allowed.

A1.6 Glazing Tapes

A1.6.1 Substitution of glazing tape color shall require the testing of one additional specimen, or shall be allowed by engineering analysis provided the only change from the initial three qualified specimens is a change in the tape color, as follows:

A1.6.1.1 For preformed tapes, documentation is provided that the nominal specific gravity of the substituted material is ±0.06 from that used in the initial three specimens or historic data/documentation is provided showing that different colors perform to the same performance properties that are either within or outside the allowable specific gravity range.

A1.6.1.2 For foam tapes, documentation is provided that the specific gravity, as determined by Test Methods D3575 does not differ by more than ±20 % from that used in the initial three specimens.

A1.6.2 Any substitution within the fenestration glazing tapes demonstrated by an applicable reference standard to be equal to or stronger than the initial three qualified specimens shall require the testing of one additional specimen with the only difference being in the glazing tapes.

A1.7 Glass Plies

A1.7.1 Glass color change shall be allowed automatically without additional testing.

A1.7.2 Substitution or adding of glass coating (reflective, coated, low-e, frit, and so forth) shall be allowed without additional testing as determined by engineering analysis of the

FIG. A1.2 Single Specimen Impact Locations

Large Missile

Small Missile
durability and compatibility of the treatment with glazing infill, interlayer, and sealant, adhesives or back-bedding materials.

A1.7.3 Individual glass ply thickness increase shall require the testing of one additional specimen that is identical to the three initial specimens with the only change being limited to glass ply thickness. A substitution with a decrease in glass ply thickness shall not be allowed.

A1.7.4 Glass type change from annealed to heat-strengthened or chemically-strengthened shall require the testing of one additional specimen. Glass must be of the same thickness and must not exceed any size of the three initial specimens. This applies to any and all glass plies of a unit under a single change.

A1.7.5 Glass type change from heat-strengthened to annealed or heat-strengthened to chemically-strengthened shall not be allowed.

A1.7.6 Glass type change to or from fully tempered shall not be allowed.

A1.7.7 Glass decorative surface (sandblasted, acid etched, and so forth) substitution shall not be allowed.

A1.8 Insulating Glass Units

A1.8.1 Preconditions for Substitutions from Monolithic or Laminated Glass to Insulating Glass Units:

A1.8.1.1 Monolithic or laminated lite of insulating glass unit shall be composed of the same glass type and treatment with equal thickness or thicknesses of glass, and thicker or equal interlayer of the same manufacturer and type.

A1.8.1.2 Glazing detail shall be unchanged other than to accommodate the thicker unit.

A1.8.1.3 Monolithic or laminated lite shall be attached to the glazing leg or bed in the same manner and position as originally tested.

A1.8.2 Systems with a Glazing Stop or Bead:

A1.8.2.1 Any substitution to an insulating glass unit from a monolithic or laminated glass shall require the testing of one additional specimen provided the system meets all the above preconditions.

A1.8.2.2 Additional glass lites forming the insulating unit shall be allowed to be monolithic or laminated provided the system meets all the above preconditions.

A1.8.3 Systems without a Glazing Stop or Bead:

A1.8.3.1 Any substitution to an insulating glass unit from a monolithic or laminated glass shall be allowed automatically without additional testing provided the system meets all the above preconditions. Spacers, setting blocks, primary seals and secondary seals that do not alter any other performance criteria of the assembly shall be permitted to be used in this substitution.

A1.8.3.2 Additional glass lites forming the insulating unit shall be allowed to be monolithic or laminated.

A1.8.4 Changing from a system approved with an insulating glass unit to a monolithic or single laminated unit shall not be allowed.

A1.9 Insulating Glass Unit Spacers

A1.9.1 When the approved system was tested with an insulating glass unit a change in spacer type, shape or dimension shall require the testing of one additional specimen.

A1.10 Asymmetrical Insulating Glass Unit Orientation

A1.10.1 A change in the orientation (order of lites from outboard to inboard) of an asymmetrical insulating glass unit from the approved orientation shall not be allowed.

A1.11 Interlayer Type or Brand

A1.11.1 Any substitution of interlayer color from the same manufacturer and type as was originally qualified shall be allowed automatically.

A1.11.2 Any substitution of interlayer decorative treatment from the same manufacturer and type as was originally qualified shall be allowed automatically provided the decorative treatment does not contact the glass or plastic glazing.

A1.11.3 Any increase of the interlayer thickness by any amount, provided it is the same manufacturer and type as was originally qualified shall be allowed automatically.

A1.11.4 Any substitution of interlayer manufacturer or type shall not be allowed.

A1.11.5 A decrease of the nominal interlayer thickness up to 10 % for the same type or brand interlayer as was originally qualified shall require the testing of one additional specimen.

A1.11.6 Decrease of the nominal interlayer thickness of more than 10 % for the same type interlayer as was originally qualified shall not be allowed.

PREMISES FOR SUBSTITUTION—FRAMING MATERIALS

A1.12 General

A1.12.1 For all wind zones, any substitution of framing materials on the basis of a single specimen test shall require infill impacts as shown in A1.4 and additional impacts per the locations specified in 5.3.3.6 and 5.3.3.7.

A1.12.2 The substitution profile section moduli and moments of inertia must be greater than or equal to the original profile tested as evaluated per standard engineering practices.

A1.12.3 Any substitution within the framing, sash, panel or door leaf material must maintain the same glazing design, detail, and glass bite as originally tested.

A1.13 Sliding-Projected-Dual Action Windows; Sliding Doors; and Hinged Doors Consisting of Sliding Door and Window Panels, Fixed Panels of Door or Window Assemblies, Window Sash, Window Vents, and Hinged Door Leafl

A1.13.1 Any substitution within the operable window or operable door assembly shall meet the requirements of A1.12 and A1.2.2 or require the testing of one additional specimen identical to the initial three qualified with the only difference being in the operable window or operable door assembly.

A1.13.2 Rolling, Sliding, and Hinging Hardware—Any substitution within the operable window or operable door assembly of operation hardware shall require the testing of one additional specimen identical to the initial three qualified with the only difference being in the operation hardware used. A reduction in the number of operation points (for example, butt hinges, pivots, casters, and so forth) shall not be permitted. The addition of operation points over and above the number originally tested is permissible as shown in A1.2.2.
A1.13.3 Locking Hardware for Sliding-Projected-Dual Action Windows, Sliding Doors, and Hinged Doors—Any substitution within the operable window or operable door assembly of locking hardware shall require the testing of one additional specimen identical to the initial three qualified with the only difference being in the locking hardware used. A reduction in the number of lock points shall not be permitted. The addition of locking points over and above the number originally tested is permissible as shown in A1.2.2.

A1.14 Storefront Framing, Curtain Walls, Fixed Windows, and Mullions

A1.14.1 Intermediate Framing Members—Any substitution within the framing or fixed window assembly, vertical or horizontal mullion profile shall meet the requirements of A1.12.2 and A1.2.2 or require the testing of one additional specimen identical to the initial three qualified with the only difference being the vertical or horizontal mullion profile.

A1.15 Skylight and Roof Windows

A1.15.1 Hinging Hardware—Any substitution within the fenestration assembly of hinging hardware shall require the testing of one additional specimen identical to the initial three qualified with the only difference being in the hinging hardware used.

A1.15.2 Locking Hardwares—Any substitution within the fenestration assembly of locking hardware shall require the testing of one additional specimen identical to the initial three qualified with the only difference being in the locking hardware used.

A2. IMPACT PROTECTIVE SYSTEM SUBSTITUTIONS

A2.1 Introduction

A2.1.1 Substitution allowances are presented in the following text for Impact Protective System assemblies qualified under this standard:

A2.1.2 These substitutions are limited to performance qualified under Test Method E 1886 and this specification.

A2.1.3 The substitution language applies to the following Impact Protective System types illustrated in Fig. A2.1. These figures are general in nature. Infill, bracing, and locking methods may vary.

Accordion Systems—Bi-Folding Systems
Bahama Systems—Top Hinging Systems
Colonial Systems—Side Hinging Systems/Sliding Systems
Panel Systems—Corrugated or Flexible
Roll Systems—Slatted or Continuous

A2.2 Substitution Categories

A2.2.1 Automatic—No additional testing or analysis necessary.

A2.2.2 Engineering Analysis—Demonstrated or documented performance through a review of materials that predicates a minimum of equivalent performance.

A2.2.3 Single Specimen—one specimen, identical to the original specimen qualified with the only difference being the element to be substituted.

A2.2.4 Not Allowed—Three identical specimens out of four are required to qualify the substitution, as for a new product.

A2.3 General Premises for Substitution

A2.3.1 Successful tests of an impact protective system shall qualify other assemblies of the same or less area, and the same or greater section modulus, provided the construction details and reinforcement are unchanged.

A2.3.2 Any substitution which changes only the color of a product and is deemed to not have any structural influence, in dimension and strength, shall be allowed automatically. Changes to pigments of color of homogeneous materials shall require engineering analysis for equivalency.

A2.3.3 Any substitution shall be allowed for materials and components only after a minimum of three out of four initial specimens have passed the prescribed performance requirements and are identical in every way including anchorage and mounting.

A2.3.4 Any substitution shall be qualified at a pressure equal to the design pressure at which the three initial specimens were qualified.

A2.3.5 Substitution of an element shall not be allowed if a specimen failure occurs for any reason during a single specimen test of that substitution.

A2.3.6 Automatically substituted elements shall be allowed to be combined into a system without requiring engineering analysis or testing.

A2.3.7 Any substitution of a stronger substrate for a weaker substrate shall be allowed with engineering analysis to confirm the anchor type and strength required for the stronger substrate.

A2.3.8 No more than three substituted elements that are individually qualified by a single test shall be combined into a system.

PREMISE FOR SUBSTITUTION—IMPACT PROTECTION SYSTEMS

A2.4 Unless otherwise stated in this Annex A2, when substituting an element on the basis of a single specimen test refer to Fig. A2.2. Impact a single specimen test sample in two locations in the configuration that is considered the worst case. Order of impact is immaterial.

A2.5 For systems that are substituting two track or mounting conditions refer to Fig. A2.3. Impact a single specimen test sample in two locations in the configuration that is considered the worst case. Order of impact is immaterial.

A2.5.1 When a build-out or offset type mounting element has been tested at a given separation between the primary system track or frame and the primary substrate anchor connections and where that projection provides a build-out or offset of the primary system track or frame attachment from the plane of the primary substrate anchor connections, all other build-out or offset elements of a lesser projection or offset,
using the same material thickness and basic profile, shall be allowed automatically.

A2.6 For systems that are substituting two track or mounting conditions in combination with infill bracing substitution or other substitutions refer to Fig. A2.4. Impact a single specimen test sample in three locations in the configuration that is considered the worst case. Order of impact is immaterial.

A2.7 Accordion Systems

A2.7.1 Any substitutions of a different center locking mechanism shall require a single specimen test with a minimum of one impact to the center lock mechanism.
A2.7.2 Any substitution of locking system location different from the original three identical passing specimens shall require the testing of one additional specimen.

A2.7.3 The inclusion of additional locking mechanisms in the same system shall require the testing of one additional specimen.

A2.8 Bahama Systems

A2.8.1 Any substitution of an alternate locking or retaining system shall require the testing of one additional specimen.

A2.8.2 Any substitution of backing material shall not be allowed.

A2.9 Colonial Systems

A2.9.1 Any substitution of an alternate locking or retaining system shall require the testing of one additional specimen.

A2.9.2 Any substitution of backing materials shall not be allowed.

A2.10 Panel Systems

A2.10.1 Any modification to mounting hole size, shape, or location shall require the testing of one additional specimen, provided the diameter or the shape, or both, of the hole are not increased or altered.

A2.10.2 Any substitution of larger diameter or increased area mounting holes shall not be allowed.

A2.11 Roll Systems

A2.11.1 Any substitution of an alternate locking or retaining system shall require the testing of one additional specimen.

APPENDIXES

(Nonmandatory Information)

X1. BREACHING OF THE BUILDING ENVELOPE

X1.1 Damage and Internal Pressurization—Windows, doors, and curtain walls are building envelope components (defined as “components and cladding,” in ASCE 7) often subject to damage in windstorms. Windborne debris impact can not only cause failure of these building envelope components but can also expose a building’s contents to the damaging effects of continued wind and rain. From a structural perspective, a potentially more serious result can be internal pressurization of the building. When the windward wall of a building is breached, the internal pressure in the building increases resulting in larger outward acting pressure on the other walls and roof. Similarly, when a breached wall is subject to leeward wall pressures, the internal pressure in the building decreases possible resulting in larger inward acting pressures on the other walls and roof. Depending on the size of the breached envelope components, the building may be classified as a “partially enclosed building” as defined in ASCE 7. For this classification of building, the internal pressure coefficient increased to +0.55 (from +0.18 for an enclosed building) and to −0.55 (from −0.18 for an enclosed building) this represents more than a three fold increase in internal pressure and, if not accounted for in design, can significantly increase the net pressure (both positive and negative) for which the envelope components were designed.

X1.1.1 ASCE 7 specifies that buildings in “wind borne debris regions” having glazing in the bottom 60 feet that is not designed or protected from missile impact, have such glazing be treated as openings for the purpose of classifying a building as “enclosed” or “partially enclosed.” This may require these buildings to be designed for larger internal pressures if classified as a “partially enclosed building.” It is the intent of this specification to quantify the requirements for windborne debris impact.

NOTE X1.1—Dade (1) and Broward (2) counties, Southern Building Code Congress International (SBCCI) Standard SSTD 12 (3), and The Texas Department of Insurance Building Code for Windstorm Resistant Construction (4) do not limit missile impact protection to the bottom 18.2 m (60 ft).

X1.2 Design Pressure and Product Qualification Under This Specification:

X1.2.1 The air pressure cycling portion of Test Method E 1886 applies pressures that are a function of P, where P...
denotes the maximum inward (P_{pos}) and outward (P_{neg}) air pressure differentials, which are either specified or are equal to the design pressure. “Design pressure” is defined in Test Method E 1886 as follows:

— the uniform static air pressure difference, inward or outward, for which the test specimen would be designed under service load conditions using conventional structural engineering specification and concept. This pressure is determined by either analytical or wind tunnel procedures (such as specified in ANSI/ASCE 7).”

X1.2.2 ASCE 7 defines the fenestration as “components and cladding.” The procedure for determining the design pressure for components and cladding is different for low-rise buildings (buildings having a mean roof height less than or equal to 18.2 m (60 ft) than for other buildings not classified as low-rise buildings. In either case, the design pressure is a function of several parameters including Importance Factor (I), Exposure Category (A, B, C, or D), topography and Topographic Factor (K_{tz}), Mean Roof Height (h), height of the fenestration assembly above the ground, location (zone) of the fenestration assembly on the building elevation, and the Effective Wind Area (A) of the fenestration assembly. Only the latter parameter, Effective Wind Area (A), is under the control of the building designer and fenestration manufacturer.

X1.2.3 All of these parameters should be considered when selecting P_{pos} and P_{neg}. When defining substitution criteria the specification addresses only one of these, area of assembly, in A1.3.3 (“Any substitution of an assembly of the same type as the three initial specimens that contains smaller sash, panels, or lites at equal or lower design pressures shall be allowed automatically provided the same methods of fabrication are used and the anchorage is unchanged...”). Section 5.4.1.1 of this specification states that the selection of P_{pos} and P_{neg} should be made “...for which qualification is sought.” A conservative approach would base P_{pos} and P_{neg} on the highest factor for each parameter (that is, open exposure, tallest building, highest importance factor, edge location, and smallest area). An alternate approach should explicitly state what assumptions were made for each parameter in the selection of P_{pos} and P_{neg}.

X2. IMPACT RISK ANALYSIS

X2.1 Summary of Risk Parameters in Twisdale et al (5)—The report discusses the following parameters that affect the risk of building damage from windborne debris:

X2.1.1 Wind velocity,
X2.1.2 Type and quantity of missiles in the wind-field generated from ground sources,
X2.1.3 Type and quantity of missiles in the wind-field generated from building sources, as function of the quality of construction,
X2.1.4 Density of buildings,
X2.1.5 Shape and height of buildings, and
X2.1.6 Percentage of glazed openings.

X2.2 The report combines a hurricane wind field model, a missile generation model, a missile trajectory model and an impact model to produce a risk analysis. The output is expressed in terms of curves of specified impact energy resistance or impact momentum resistance levels plotted on a graph with reliability (R) (from 0.75 to 1.00) on the vertical axis and wind velocity (from 110 to 170 mph peak gusts) on the horizontal axis. Plots have been generated for single story detached residential buildings, for two different values for the quality of construction and density of buildings, and three different values for percentage of glazed openings.

X2.3 The Performance Objective of This Specification

X2.3.1 This specification establishes missile impact criteria for all building types and occupancies. The antecedents for this effort are the criteria established in Australian National Standards (6), in the Florida counties of Dade (1) and Broward (2), in SBCCI Standard SSTD 12 (3), and in the Texas Department of Insurance Standard Code for Windstorm Resistant Construction (4). All of these are based on analysis and judgement of experts after many years of windstorm study. The Twisdale et al study (5) represents new inputs into this body of analysis and experience. Since it so far has covered only a very limited range of buildings out of the total scope of this specification, its application to the development of this specification has also required a degree of judgement.

X2.3.2 The energy and momentum curves included in the Twisdale et al (5) report are referenced to a zero energy or momentum curve, that can be interpreted as the reliability achieved at various wind speeds when no impact resistance is provided. Other curves describe reliability versus wind speed at increasing amounts of impact resistance, for example 10, 20, 50, 100, 200, and 300 lb of momentum. All the curves illustrated by Twisdale et al (5) including the zero resistance curve, demonstrate reliability above 0.85 at 110 mph wind speed. Reliability diminishes rapidly, with varying slopes, at higher wind speeds.

X2.3.3 Two approaches can be taken to using these curves to inform the specification process: the absolute reliability approach, and the relative improvement approach.

X2.3.4 The absolute reliability approach establishes the objective of achieving a specified level of reliability, say 0.90, by specifying the appropriate impact resistance for different wind speeds, and, possibly, building types. This approach is attractive because it enables the definition of reliability to be consistent with the reliability objective of traditional structural design. However, it has two disadvantages in this case:

X2.3.4.1 The curves plotted are actually average values and should be thought of as broad fuzzy bands with large confidence bounds due to the many uncertainties embedded in the analytical models that produce them. Therefore, establishing a specified reliability level may be misleading without extensive qualifying statements.

X2.3.4.2 The curves diminish so fast at higher wind speeds that the levels of resistance required to achieve high values of reliability at these wind speeds would require impact energies and momenta far in excess of anything considered heretofore,
X2.3.5 The relative improvement approach takes its cue from the zero protection curves and establishes the objective of achieving a specified proportional improvement in reliability. A 50% improvement, 0.50 to 0.75, 0.60 to 0.80, 0.70 to 0.85, 0.80 to 0.90, and so forth, could be the objective. The curves illustrated by Twisdale et al (5), for the limited range of parameters analyzed, suggest that a 50% or better improvement can be achieved by providing impact protection from a 4100 g (9 lb) 2 by 4 travelling at 15.24 m/s (50 f/s). This is of the same order of magnitude included in the Australian, SBCCI, Florida, and Texas standards.

X2.3.6 Thus, the proposed specification can be justified on the basis of the relative improvement approach and its relation to previous research and antecedents. It can be further refined as more analytical information is developed.

X3. ASSEMBLY ELEVATION ABOVE THE GROUND

X3.1 Section 6.1 of this specification establishes assembly elevation above the ground as one of three parameters to be used in the selection of an applicable missile. Unless otherwise specified, Table 3 is to be used. Table 3 uses two elevation categories: ≤9.1 and >9.1 m (30 and 30 ft). Various 2 by 4 in. lumber (large) missiles representative of ground-level debris and structural debris are specified in the former (≤9.1 m (30 ft)). Two g steel balls (small missiles) representative of roof gravel are specified in the latter (>9.1 m (30 ft)). The assembly elevation subject to large missiles may be increased by the specifying authority where it determines that the assembly is exposed to structural debris from adjacent structures.

REFERENCES

(4) Building Code for Windstorm Resistant Construction, Texas Department of Insurance, 33 Guadalupe Street, Austin, TX 78714-9104, 1997.